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In this work, we design an entropy stable, finite volume approximation for the ideal 
magnetohydrodynamics (MHD) equations. The method is novel as we design an affordable 
analytical expression of the numerical interface flux function that discretely preserves the 
entropy of the system. To guarantee the discrete conservation of entropy requires the 
addition of a particular source term to the ideal MHD system. Exact entropy conserving 
schemes cannot dissipate energy at shocks, thus to compute accurate solutions to problems 
that may develop shocks, we determine a dissipation term to guarantee entropy stability 
for the numerical scheme. Numerical tests are performed to demonstrate the theoretical 
findings of entropy conservation and robustness.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The entropy in physical systems governed by (nonlinear) conservation laws is an often overlooked quantity that is con-
served for smooth solutions but increases (or decreases according to the sign convention adopted) in the presence of shocks. 
One can design numerical methods to be entropy conservative if, discretely, the local changes of entropy are the same as 
predicted by the continuous entropy conservation law. The approximation is said to be entropy stable if it produces more 
entropy than an entropy conservative scheme.

For entropy stable numerical fluxes, Tadmor [1,2] was the first to introduce the idea of entropy conservation to design 
stable numerical approximations of nonlinear hyperbolic conservation laws. On a semi-discrete level the principle is that 
the discrete flux function satisfies discrete analogs of the conservation laws for the conservative variables as well as the 
scalar conservation law for entropy. Tadmor’s flux function performs well for smooth data but can be made stable for shock 
problems [3]. But, Tadmor’s flux function, which involves an integral in phase space, is numerically expensive. For large 
scale simulations we want a more practical, computationally tractable, entropy conserving flux.

In the examination of entropy conservation we discuss an important distinction between entropy conservation and sta-
bility, because there is a problem with entropy conservative formulations. Such approximations can suffer breakdown if used 
without dissipation to capture shocks which results in large amplitude oscillations [4]. Thus, an issue of entropy conserva-
tive formulations is that they may not converge to the weak solution as there is no mechanism to admit the dissipation 
physically required at the shock.

For the ideal magnetohydrodynamic (MHD) system the issues of entropy conservation and satisfaction of the divergence-
free condition (i.e. ∇ · B = 0) are inextricably linked. In this paper we will show that to guarantee the conservation of 
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entropy in a discrete sense requires the addition of a source term proportional to the divergence of the magnetic field. 
This source term also operates as a numerical method of divergence cleaning similar to the method introduced by Dedner 
et al. [5]. That is, errors in the divergence-free conditions (that can be thought of as “numerical magnetic monopoles” [5]) 
are advected away from their point of origin with a speed proportional to the fluid velocity. So, for multi-dimensional 
approximations, this source term offers a simple mechanism to control errors in the divergence-free conditions.

In this paper we develop affordable, entropy stable methods for the ideal MHD model. There is recent work for entropy 
stable approximations for the Euler equations from Ismail and Roe [6] and Chandrashekar [7]. The entropy stable approxi-
mations were extended to arbitrary order with a finite volume discretization by LeFloch and Rohde [8] or a discontinuous 
Galerkin (DG) spectral element formulation by Carpenter et al. [4]. Also, there is recent work on entropy-stable, high-order, 
and well-balanced approximations for the shallow water equations [9,10].

The remainder of this paper is organized as follows: Section 2 provides an introduction to the ideal MHD equations, 
the computational issues, and select the governing equations for which entropy will be conserved. In Section 3 we briefly 
describe our finite volume discretization. Section 4 defines the necessary variables and analytical tools to discuss the entropy 
of the ideal MHD system in a mathematically rigorous way. We derive an entropy conserving numerical flux in Section 5.1
and discuss stabilizations of the conservative flux in Section 5.2. Numerical results are presented in Section 6, where we 
verify theoretical predictions and compare the results of our method against known results in the literature. Section 7
presents concluding remarks. Appendix A outlines the extension of the entropy conserving and stable flux functions to 
higher spatial dimensions.

2. The ideal magnetohydrodynamic equations

The ideal magnetohydrodynamic (MHD) equations are a classical model from plasma physics used to study the dynamics 
of electrically conducting fluids. The equations are a single set of fluid equations for the total mass density, center-of-mass 
momentum density, total energy density, and the magnetic field of the system [11]. The ideal MHD equations can be written 
as a system of conservation laws

∂

∂t

⎡⎢⎢⎣
ρ

ρu
ρe
B

⎤⎥⎥⎦+∇ ·

⎡⎢⎢⎢⎢⎣
ρu

ρ(u ⊗ u) +
(

p + 1
2 ‖B‖2

)
I − B ⊗ B

u
(
ρe + p + 1

2 ‖B‖2
)

− B(u · B)

B ⊗ u − u ⊗ B

⎤⎥⎥⎥⎥⎦= 0,

∇ · B = 0,

(2.1)

where ρ , ρu, and ρe are the mass, momentum, and energy densities of the plasma system, and B is the magnetic field. 
The thermal pressure, p, is related to the conserved quantities through the ideal gas law:

p = (γ − 1)

(
ρe − ρ

2
‖u‖2 − 1

2
‖B‖2

)
. (2.2)

The remainder of this paper focuses on the derivation of an entropy conserving and entropy stable finite volume methods 
for the one-dimensional ideal MHD system

∂

∂t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρe
B1
B2
B3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ∂

∂x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρu
ρu2 + p + 1

2 ‖B‖2 − B2
1

ρuv − B1 B2
ρuw − B1 B3

u
(
ρe + p + 1

2‖B‖2
)

− B1(u · B)

0
uB2 − v B1
uB3 − w B1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0,

∂ B1

∂x
= 0.

(2.3)

We consider the one-dimensional ideal MHD system to demonstrate the validity of the entropy conserving approach derived 
in this paper. The entropy analysis tools and flux derivations easily extend to higher spatial dimensions (as we show in 
Appendix A).

We immediately observe that the sixth equation of (2.3) simplifies to

∂ B1 = 0. (2.4)

∂t
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Meaning that any spatial variation in B1 is stationary in time. Together with the divergence-free condition ∂x(B1) = 0, we 
obtain the result that B1 is a constant in space and time for the 1D ideal MHD system. In our derivations, however, we will 
treat the quantity of B1 as non-constant for two important reasons:

1. The proof of the discrete entropy conserving flux incorporates contributions from B1 that are important for cases when 
B1 �= constant.

2. We want the discussion to remain general and easily extendable to higher dimensions.

In general, the divergence-free condition on the magnetic field (sometimes referred to as the involution condition or 
solenoidal condition) is a physical law that reflects that magnetic monopoles have never been observed. Numerical methods 
for multidimensional ideal MHD must, in general, satisfy (or at least control) some discrete version of the divergence-free 
condition [12]. Failure to do so generally leads to a nonlinear numerical instability, which can cause negative pressures 
and/or densities. There are several approaches to control the error in ∇ · B and in depth review of many methods can be 
found in Tóth [12].

Hyperbolic systems, like the ideal MHD equations, can be efficiently and accurately solved numerically with Godunov-
type methods [13]. These methods require the solution of a Riemann problem at element interfaces. The homogeneous 
1D ideal MHD equations (2.3) support seven propagating plane-wave solutions (two fast magnetoacoustic, two Alfvén, two 
slow magnetoacoustic, and an entropy wave) and a stationary plane-wave solution (the divergence wave). The stationary 
plane-wave solution comes directly from the fact that the MHD equations preserve the divergence constraint:

∂

∂t
(∇ · B) = 0. (2.5)

Nonlinear numerical instability can be viewed as a direct consequence of the stationary divergence wave [12]. Even if the 
divergence-free condition is satisfied initially by an approximation, it is not guaranteed to remain satisfied as the solution 
evolves. These errors, which could be interpreted as numerical monopoles [5], are stationary and grow in time.

In the course of an entropy analysis of the ideal MHD equations (2.1) Godunov [14] observed that the divergence-free 
condition can be incorporated into the ideal MHD equations as a source term proportional to the divergence of the magnetic 
field (which, on a continuous level, is adding zero). This additional source term not only allows the equations to be put in 
symmetric hyperbolic form [14,15], but it also restores Galilean invariance. With the additional term the divergence wave is 
no longer stationary, and instead, is advected as a passive scalar [16,17]:

∂

∂t
(∇ · B) + ∇ · (u∇ · B) = 0. (2.6)

For numerical approximations the difference between a stationary and a propagating divergence wave is significant. 
Now, errors generated by “numerical monopoles” are advected away from their point of origin with a speed proportional 
to the fluid velocities. A similar idea lies behind the hyperbolic divergence cleaning method of Dedner et al. [5]. Powell 
[17] demonstrated that numerical methods applied to the MHD equations with the symmetrizing source term were much 
more stable than the same methods applied to the original MHD equations. The modified form of the MHD equations is 
often referred to as the 8-wave formulation, since this augmented system supports eight propagating plane wave solutions. 
Although this approach has been used with some success, it does have a significant drawback: the 8-wave formulation is 
non-conservative and difficulties with obtaining the correct weak solution have been documented in the literature (see for 
example Tóth [12]).

Janhunen [16] used a proper generalization of Maxwell’s equations when magnetic monopoles are present and imposed 
electromagnetic duality invariance of the Lorentz force to derive an alternative source term for the MHD system:

∂

∂t

⎡⎢⎢⎣
ρ

ρu
ρe
B

⎤⎥⎥⎦+ ∇ ·

⎡⎢⎢⎢⎢⎣
ρu

ρ(u ⊗ u) +
(

p + 1
2 ‖B‖2

)
I − B ⊗ B

u
(
ρe + p + 1

2 ‖B‖2
)

− B(u · B)

B ⊗ u − u ⊗ B

⎤⎥⎥⎥⎥⎦= −(∇ · B)

⎡⎢⎢⎣
0
0
0
u

⎤⎥⎥⎦ . (2.7)

The Janhunen source term (2.7) preserves the conservation of momentum and energy, and treats the magnetic field as an 
advected scalar. Additionally, the source term (2.7) restores the positivity of the Riemann problem [16] and the Lorentz 
invariance of the ideal MHD system [18].

The Janhunen source term also plays an important role to guarantee the discrete conservation of entropy, a fact we show 
in Section 5.1. Thus, for the governing equations and analysis of our prototype entropy conserving flux for the ideal MHD 
system we consider the one-dimensional problem with the addition of the Janhunen source term:
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∂q

∂t
+ ∂ f
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ∂

∂x
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1
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u
(
ρe + p + 1
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)

− B1(u · B)

0
uB2 − v B1
uB3 − w B1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −∂ B1

∂x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s, (2.8)

where q is the vector of conserved variables, f is the vector flux, and s is the vector source term.

3. Finite volume discretization

The finite volume (FV) method is a discretization technique for partial differential equations especially useful for the 
approximation of systems of conservations laws. The finite volume method is designed to approximate conservation laws in 
their integral form, e.g.,∫

V

qt dx +
∫
∂V

f · n̂ dS = 0. (3.1)

For instance, in one spatial dimension we break the interval into non-overlapping intervals

V i =
[

x
i− 1

2
, x

i+ 1
2

]
, (3.2)

and the integral equation of a balance law, with a source term, becomes

d

dt

xi+1/2∫
xi−1/2

q dx + f ∗ (xi+1/2
)− f ∗ (xi−1/2

)=
xi+1/2∫

xi−1/2

s dx. (3.3)

A common approximation is to assume that the solution and the source term are constant within the volume. Then we 
determine, for example, what is analogous to a midpoint quadrature approximation of the solution integral

xi+1/2∫
xi−1/2

q dx ≈
xi+1/2∫

xi−1/2

qi dx = qi�xi . (3.4)

Note that the solution is typically discontinuous at the boundaries of the volumes. To resolve this, we introduce the idea 
of a “numerical flux,” f ∗(qL, qR), often derived from the (approximate) solution of a Riemann problem. That is, f ∗ is a 
function that takes the two states of the solution at an element interface and returns a single flux value. For consistency, 
we require that

f ∗(q,q) = f , (3.5)

that is, the numerical flux is equivalent to the physical flux if the states on each side of the interface are identical. A signifi-
cant portion of this paper is devoted to the derivation of a numerical flux that conserves the discrete entropy of the system 
for the 1D ideal MHD equations (2.8). So we defer the discussion of the numerical flux to Section 5.1.

We must also address how to discretize the source term s in (3.3). There is a significant amount of freedom in the source 
term discretization. Previous work in [19,20] has demonstrated that designing entropy conserving methods for equations 
with a source term requires special treatment. In the later derivations a consistent source term discretization necessary for 
entropy conservation will reveal itself. So, the in-depth discussion of the discrete treatment of the source term is discussed 
in Section 5.1.

For full clarity, we choose the general form of the finite volume discretization to be

(
qt

)
i + 1

�xi

(
f ∗

i+ 1
2

− f ∗
i− 1

2

)
= si = 1

2

(
s

i+ 1
2

+ s
i− 1

2

)
, (3.6)

where, in a general sense, the discrete source term in cell i will contribute at each interface i + 1/2 and i − 1/2.
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4. Entropy analysis

In this section we define the entropy variables, entropy Jacobian, and other quantities necessary to develop an entropy 
stable approximation for the ideal MHD equations. We note that one can find a fully general and detailed description of 
entropy stability theory in, for example, [15,21].

In the case of ideal MHD a suitable entropy is the physical entropy density (scaled by the constant (γ − 1) for conve-
nience)

U (q) = − ρs

γ − 1
, (4.1)

where s = ln(p) − γ ln(ρ) is the physical entropy and q is the vector of conservative variables. The minus sign in (4.1) is 
conventional in the theory of hyperbolic conservation laws to ensure a decreasing entropy function. The entropy flux for 1D 
ideal MHD is

F (q) = uU = − ρus

γ − 1
. (4.2)

The entropy variables are defined as

v := Uq =
[

γ − s

γ − 1
− ρ‖u‖2

2p
,

ρu

p
,

ρv

p
,

ρw

p
, −ρ

p
,

ρB1

p
,

ρB2

p
,

ρB3

p

]T

. (4.3)

The entropy variables (4.3) are equipped with the symmetric positive definite (s.p.d.) Jacobian matrices

qv := H−1, (4.4)

and

vq := H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρu ρv ρw ρe − 1
2 ‖B‖2 0 0 0

ρu ρu2 + p ρuv ρuw ρHu 0 0 0

ρv ρuv ρv2 + p ρv w ρH v 0 0 0

ρw ρuw ρv w ρw2 + p ρH w 0 0 0

ρe − 1
2 ‖B‖2 ρHu ρH v ρH w ρH2 − a2 p

γ −1 + a2‖B‖2

γ
pB1
ρ

pB2
ρ

pB3
ρ

0 0 0 0 pB1
ρ

p
ρ 0 0

0 0 0 0 pB2
ρ 0 p

ρ 0

0 0 0 0 pB3
ρ 0 0 p

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.5)

where

a2 = pγ

ρ
, ρe = p

γ − 1
+ ρ

2
‖u‖2 + 1

2
‖B‖2, H = a2

γ − 1
+ 1

2
‖u‖2. (4.6)

Finally, as it will be of use in later derivations, we compute the entropy potential to be

φ = v · f − F = ρu + ρu‖B‖2

2p
− ρB1(u · B)

p
. (4.7)

4.1. Discrete entropy conservation for the 1D ideal MHD equations

Next, we introduce the concept of discrete entropy conservation. Let’s assume that we have two adjacent states (L, R)

with cell areas (�xL, �xR). We discretize the ideal MHD equations semi-discretely and examine the approximation at the 
i + 1

2 interface. We suppress the interface index unless it is necessary for clarity. Also note the factor of one half from the 
source term discretization in (3.6).

�xL
∂qL

∂t
= f L − f ∗ + 1

2
�xL s

i+ 1
2
,

�xR
∂qR

∂t
= f ∗ − f R + 1

2
�xR s

i+ 1
2
.

(4.8)

We can interpret the update (4.8) as a finite volume scheme where we have left and right cell-averaged values separated 
by a common flux interface.
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We premultiply the expressions (4.8) by the entropy variables to convert to entropy space. From the chain rule we know 
that Ut = v T qt , hence a semi-discrete entropy update is

�xL
∂U L

∂t
= v T

L

(
f L − f ∗ + 1

2
�xL s

i+ 1
2

)
,

�xR
∂U R

∂t
= v T

R

(
f ∗ − f R + 1

2
�xR s

i+ 1
2

)
.

(4.9)

If we denote the jump in a state as �·� = (·)R − (·)L and the average of a state as {{·}} = ((·)R + (·)L)/2, then the total update 
will be

∂

∂t
(�xL U L + �xR U R) = � v �T f ∗ − � v · f � + {{�xv}}T s

i+ 1
2
. (4.10)

We want the discrete entropy update to satisfy the discrete entropy conservation law. To achieve this, we require

� v �T f ∗ − � v · f � + {{�xv}}T s
i+ 1

2
= − � F � . (4.11)

We combine the known entropy potential φ in (4.7) and the linearity of the jump operator to rewrite the entropy conser-
vation condition (4.11) as

� v �T f ∗ = � ρu � +
�

ρu‖B‖2

2p

�
−

�
ρB1(u · B)

p

�
− {{�xv}}T s

i+ 1
2
. (4.12)

We denote the constraint (4.12) as the discrete entropy conserving condition. This is a single condition on the numerical 
flux vector f ∗ , so there are many potential solutions for the entropy conserving flux. Recall, however, that we have the 
additional requirement that the numerical flux must be consistent (3.5). We develop the expression for f ∗ in Section 5.1
where we will see that the discretization of the source term si+1/2 plays an important role to ensure that (4.12) is satisfied.

5. Derivation of an entropy stable numerical flux

With the necessary entropy variable and Jacobian definitions as well as the formulation of the discrete entropy conserv-
ing condition (4.12) we are ready to derive an affordable entropy conserving numerical flux in Section 5.1. As we previously 
noted, entropy conserving methods may suffer breakdown in the presence of shocks [4]. Thus, in Section 5.2, we will de-
sign an entropy stable numerical flux that uses the entropy conserving flux as a base and incorporates a dissipation term 
required for stability.

5.1. Entropy conserving numerical flux for the 1D ideal MHD equations

We have previously defined the arithmetic mean. To derive an entropy conserving flux we will also require the logarith-
mic mean

(·)ln := (·)L − (·)R

ln((·)L) − ln((·)R)
. (5.1)

A numerically stable procedure to compute the logarithmic mean is described by Ismail and Roe [6] (Appendix B).

Theorem 1 (Entropy conserving numerical flux). If we introduce the parameter vector

z =
[√

ρ

p
,

√
ρ

p
u,

√
ρ

p
v,

√
ρ

p
w,

√
ρp, B1, B2, B3

]T

, (5.2)

the averaged quantities for the primitive variables and products

ρ̂ = {{z1}} zln
5 , û1 = {{z2}}

{{z1}} , v̂1 = {{z3}}
{{z1}} , ŵ1 = {{z4}}

{{z1}} , p̂1 = {{z5}}
{{z1}} , p̂2 = γ + 1

2γ

zln
5

zln
1

+ γ − 1

2γ

{{z5}}
{{z1}} ,

û2 = {{z1z2}}{{
z2

1

}} , v̂2 = {{z1z3}}{{
z2

1

}} , ŵ2 = {{z1z4}}{{
z2

1

}} , B̂1 = {{z6}} , B̂2 = {{z7}} , B̂3 = {{z8}} ,

B̊1 =
{{

z2
6

}}
, B̊2 =

{{
z2

7

}}
, B̊3 =

{{
z2

8

}}
, B̂1 B2 = {{z6z7}} , B̂1 B3 = {{z6z8}} ,

(5.3)

and discretize the source term in the finite volume method to contribute to each element as
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si = 1

2

(
s

i+ 1
2

+ s
i− 1

2

)
= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� B1 �

i+ 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�xz2

1 B1
}}

{{z1 z3}}B̂2{{
�xz2

1 B2
}}

{{z1 z4}}B̂3{{
�xz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i+ 1

2

+ � B1 �
i− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�xz2

1 B1
}}

{{z1 z3}}B̂2{{
�xz2

1 B2
}}

{{z1 z4}}B̂3{{
�xz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.4)

then we can determine a discrete, entropy conservative flux to be

f ∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂û1

p̂1 + ρ̂û2
1 + 1

2

(
B̊1 + B̊2 + B̊3

)− B̊1

ρ̂û1 v̂1 − B̂1 B2

ρ̂û1 ŵ1 − B̂1 B3
γ û1 p̂2
γ −1 + ρ̂û1

2 (û2
1 + v̂2

1 + ŵ2
1) + û2

(
B̂2

2 + B̂2
3

)
− B̂1

(
v̂2 B̂2 + ŵ2 B̂3

)
0

û2 B̂2 − v̂2 B̂1

û2 B̂3 − ŵ2 B̂1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.5)

Proof. To derive an affordable entropy conservative flux for the one-dimensional ideal MHD equations we first expand the 
discrete entropy conserving condition (4.12) componentwise to find

− f ∗
1

( �s�
γ − 1

+
�

ρ‖u‖2

2p

�)
+ f ∗

2

�
ρu

p

�
+ f ∗

3

�
ρv

p

�
+ f ∗

4

�
ρw

p

�
− f ∗

5

�
ρ

p

�
+ f ∗

6

�
ρB1

p

�
+ f ∗

7

�
ρB2

p

�
+ f ∗

8

�
ρB3

p

�
= � ρu � +

�
ρu‖B‖2

2p

�
−

�
ρB1(u · B)

p

�
− {{�xv}}T s

i+ 1
2
.

(5.6)

To determine the unknown components of f ∗ we want to expand each jump term in (5.6) into linear jump components. 
This will provide us with a system of eight equations from which we determine f ∗ . To obtain linear jumps we define the 
parameter vector z such that there is no mixing of the hydrodynamic and magnetic field variables:

z :=
[√

ρ

p
,

√
ρ

p
u,

√
ρ

p
v,

√
ρ

p
w,

√
ρp, B1, B2, B3

]T

, (5.7)

with the identities

ρ

p
= z2

1,
ρu

p
= z1z2,

ρv

p
= z1z3,

ρw

p
= z1z4,

ρu2

p
= z2

2,
ρv2

p
= z2

3,
ρw2

p
= z2

4, ρu = z2z5,

s = −(γ − 1) ln(z5) − (γ + 1) ln(z1),
ρB1

p
= z2

1z6,
ρB2

p
= z2

1z7,
ρB3

p
= z2

1z8,
ρuB2

1

2p
= 1

2
z1z2z2

6,

ρuB2
2

2p
= 1

2
z1z2z2

7,
ρuB2

3

2p
= 1

2
z1z2z2

8,
ρv B1 B2

p
= z1z3z6z7,

ρw B1 B3

p
= z1z4z6z8.

(5.8)

Finally, we use the logarithmic mean (5.1) to rewrite the jump in the entropy as

�s� = −(γ − 1)
�z5 �
zln

5

− (γ + 1)
�z1 �
zln

1

. (5.9)

We use the parameter identities (5.8) and algebraic identities of the jump operator

�ab� = {{a}} �b� + {{b}} �a� ,
�

a2
�

= 2 {{a}} �a� , (5.10)
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to rewrite the left and right hand sides of the entropy conserving condition (5.6). First we have from the left of the discrete 
entropy conserving condition (4.12):

f ∗
1

{(�z5 �
zln

5

+ γ + 1

γ − 1

�z1 �
zln

1

)
− {{z2}} �z2 � − {{z3}} �z3 � − {{z4}} �z4 �}+ f ∗

2 ({{z2}} �z1 � + {{z1}} �z2 �)

+ f ∗
3 ({{z3}} �z1 � + {{z1}} �z3 �) + f ∗

4 ({{z4}} �z1 � + {{z1}} �z4 �) − 2 f ∗
5 {{z1}} �z1 �

+ f ∗
6 (2 {{z1}} {{z6}} �z1 � +

{{
z2

1

}}�z6 �)

+ f ∗
7 (2 {{z1}} {{z7}} �z1 � +

{{
z2

1

}}�z7 �)

+ f ∗
8 (2 {{z1}} {{z8}} �z1 � +

{{
z2

1

}}�z8 �).

(5.11)

Next we expand the right hand side of (5.6) into a combination of linear jumps:

�ρu� = �z2z5 � = {{z5}} �z2 � + {{z2}} �z5 � ,�
ρuB2

1

2p

	
= 1

2

�
z1z2z2

6

�
= 1

2
{{z2}}

{{
z2

6

}}�z1 � + 1

2
{{z1}}

{{
z2

6

}}�z2 � + {{z1z2}} {{z6}} �z6 � ,

�
ρuB2

2

2p

	
= 1

2

�
z1z2z2

7

�
= 1

2
{{z2}}

{{
z2

7

}}�z1 � + 1

2
{{z1}}

{{
z2

7

}}�z2 � + {{z1z2}} {{z7}} �z7 � ,

�
ρuB2

3

2p

	
= 1

2

�
z1z2z2

8

�
= 1

2
{{z2}}

{{
z2

8

}}�z1 � + 1

2
{{z1}}

{{
z2

8

}}�z2 � + {{z1z2}} {{z8}} �z8 � , (5.12)

�
ρuB2

1

p

	
=

�
z1z2z2

6

�
= {{z2}}

{{
z2

6

}}�z1 � + {{z1}}
{{

z2
6

}}�z2 � + 2 {{z1z2}} {{z6}} �z6 � ,

�
ρv B1 B2

p

�
= �z1z3z6z7 � = {{z3}} {{z6z7}} �z1 � + {{z1}} {{z6z7}} �z3 � + {{z1z3}} {{z7}} �z6 � + {{z1z3}} {{z6}} �z7 � ,�

ρw B1 B3

p

�
= �z1z4z6z8 � = {{z4}} {{z6z8}} �z1 � + {{z1}} {{z6z8}} �z4 � + {{z1z4}} {{z8}} �z6 � + {{z1z4}} {{z6}} �z8 � .

Finally, we expand the source term contribution on the right hand side. For now we leave the specific discretization of the 
source term general as a consistent approximation will reveal itself in the later analysis. First we note that the derivative 
term in the Janhunen source term (2.7) is of the form

∂

∂x
(B1) ≈ � B1 �

�x
= �z6 �

�x
. (5.13)

The source term in cell i contributes to interface i + 1
2 and interface i − 1

2 . We choose the source term to be of the form

s
i+ 1

2
= �z6 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
s6
s7
s8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.14)

where we have extra degrees of freedom when selecting s6, s7, and s8 in (5.14). Then, the source term contribution is given 
by

−{{�xv}}T s
i+ 1

2
= − �z6 �({{�xz2

1z6

}}
s6 +

{{
�xz2

1z7

}}
s7 +

{{
�xz2

1z8

}}
s8

)
. (5.15)

Every term in the discrete entropy conservation condition (5.6) is now rewritten into linear jump components of the pa-
rameter vector z. Though algebraically laborious this provides us with a set of eight equations for which we can determine 
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the yet unknown components in the entropy conserving numerical flux. Next we gather the like terms of each jump com-
ponent. Once we have grouped all the like terms for each linear jump it will become clear how to discretize the Janhunen 
source term in order to guarantee consistency. Gathering terms from (5.11), (5.12), and (5.15) we determine the system of 
eight equations:

�z1 � : γ + 1

γ − 1

f ∗
1

zln
1

+ f ∗
2 {{z2}} + f ∗

3 {{z3}} + f ∗
4 {{z4}} − 2 f ∗

5 {{z1}} + 2 f ∗
6 {{z1}} {{z6}} + 2 f ∗

7 {{z1}} {{z7}}

+ 2 f ∗
8 {{z1}} {{z8}} = {{z2}}

2

({{
z2

6

}}
+
{{

z2
7

}}
+
{{

z2
8

}})
− {{z2}}

{{
z2

6

}}
− {{z3}} {{z6z7}} − {{z4}} {{z6z8}} ,

(5.16)

�z2 � : − f ∗
1 {{z2}} + f ∗

2 {{z1}} = {{z5}} + {{z1}}
2

({{
z2

6

}}
+
{{

z2
7

}}
+
{{

z2
8

}})
− {{z1}}

{{
z2

6

}}
, (5.17)

�z3 � : − f ∗
1 {{z3}} + f ∗

3 {{z1}} = −{{z1}} {{z6z7}} , (5.18)

�z4 � : − f ∗
1 {{z4}} + f ∗

4 {{z1}} = −{{z1}} {{z6z8}} , (5.19)

�z5 � : f ∗
1

zln
5

= {{z2}} , (5.20)

�z6 � : f ∗
6

{{
z2

1

}}
= − {{z1z2}} {{z6}} − {{z1z3}} {{z7}} − {{z1z4}} {{z8}}−

{{
�xz2

1z6

}}
s6

−
{{

�xz2
1z7

}}
s7 −

{{
�xz2

1z8

}}
s8,

(5.21)

�z7 � : f ∗
7

{{
z2

1

}}
= {{z1z2}} {{z7}} − {{z1z3}} {{z6}} , (5.22)

�z8 � : f ∗
8

{{
z2

1

}}
= {{z1z2}} {{z8}} − {{z1z4}} {{z6}} . (5.23)

With the collection of equations (5.16)–(5.23) we find a rather alarming result. We know that the sixth component of the 
physical flux for the ideal MHD system is zero, i.e. f6 = 0. However, we have found in our entropy conservation condition 
that the sixth component of the numerical flux (computed from (5.21)) is

f ∗
6 = − 1{{

z2
1

}} ({{z1z2}} {{z6}} + {{z1z3}} {{z7}} + {{z1z4}} {{z8}} +
{{

�xz2
1z6

}}
s6

+
{{

�xz2
1z7

}}
s7 +

{{
�xz2

1z8

}}
s8

)
.

(5.24)

In general we cannot guarantee that (5.24) will vanish. In one dimension the argument could be made that �z6 � = � B1 � = 0
(as it is constant) and there is, in fact, no issue. However, this assumption is too restrictive to discuss higher dimensional 
entropy conservative flux formulæ. Our assumption from Section 2 that B1 �= constant revealed extra terms which otherwise 
would have been hidden from the analysis.

To remove this inconsistency introduced by the �z6 � equation we discretize the source term to cancel the problematic 
terms (5.24). We compare the structure of the extra terms in (5.24) and the degrees of freedom s6, s7, and s8 to determine 
a consistent discretization to cancel the extraneous terms in the �z6 � equation in (5.24):

s6 = −{{z1z2}} {{z6}}{{
�xz2

1z6
}} ,

s7 = −{{z1z3}} {{z7}}{{
�xz2

1z7
}} ,

s8 = −{{z1z4}} {{z8}}{{
�xz2

1z8
}} .

(5.25)

The source term at the i − 1/2 interface has an identical structure to (5.25). We collect the total source term discretization 
in cell i for clarity:

si = 1

2

(
s

i+ 1
2

+ s
i− 1

2

)
, (5.26)

where
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s
i+ 1

2
= − � B1 �

i+ 1
2

[
0, 0, 0, 0, 0,

{{z1z2}} {{z6}}{{
�xz2

1z6
}} ,

{{z1z3}} {{z7}}{{
�xz2

1z7
}} ,

{{z1z4}} {{z8}}{{
�xz2

1z8
}} ]T

i+ 1
2

,

s
i− 1

2
= − � B1 �

i− 1
2

[
0, 0, 0, 0, 0,

{{z1z2}} {{z6}}{{
�xz2

1z6
}} ,

{{z1z3}} {{z7}}{{
�xz2

1z7
}} ,

{{z1z4}} {{z8}}{{
�xz2

1z8
}} ]T

i− 1
2

.

(5.27)

It is straightforward to check the consistency of the source term discretization (5.26).
We substitute the source term discretization (5.25) into the entropy constraint (5.21) and find that the source term 

components exactly cancel the extraneous terms in the �z6 � equation (5.24). Thus, we recover a consistent term for the 
sixth numerical flux component and it is now true that

f ∗
6 = 0. (5.28)

Finally, we are able solve the remaining seven equations (5.16)–(5.20), (5.22), and (5.23) for the numerical flux components:

f ∗
1 = {{z2}} zln

5 , (5.29)

f ∗
2 = {{z5}}

{{z1}} + {{z2}}2 zln
5

{{z1}} + 1

2

({{
z2

6

}}
+
{{

z2
7

}}
+
{{

z2
8

}})
−
{{

z2
6

}}
, (5.30)

f ∗
3 = {{z2}} {{z3}} zln

5

{{z1}} − {{z6z7}} , (5.31)

f ∗
4 = {{z2}} {{z4}} zln

5

{{z1}} − {{z6z8}} , (5.32)

f ∗
5 = γ

γ − 1

{{z2}}
{{z1}}

(
γ + 1

2γ

zln
5

zln
1

+ γ − 1

2γ

{{z5}}
{{z1}}

)
+ {{z2}} zln

5

2

(
{{z2}}2

{{z1}}2
+ {{z3}}2

{{z1}}2
+ {{z4}}2

{{z1}}2

)

+ {{z7}}{{
z2

1

}} ({{z1z2}} {{z7}} − {{z1z3}} {{z6}}) + {{z8}}{{
z2

1

}} ({{z1z2}} {{z8}} − {{z1z4}} {{z6}}) ,

(5.33)

f ∗
6 = 0, (5.34)

f ∗
7 = 1{{

z2
1

}} ({{z1z2}} {{z7}} − {{z1z3}} {{z6}}) , (5.35)

f ∗
8 = 1{{

z2
1

}} ({{z1z2}} {{z8}} − {{z1z4}} {{z6}}) . (5.36)

The newly derived numerical flux (5.29)–(5.36) conserves the discrete entropy by construction. Next we verify that the 
numerical flux f ∗,ec is consistent to the physical flux. It will make the demonstration of consistency more straightforward 
if we rewrite the fifth component of the physical flux, f5, by substituting the definition of ρe:

f5 = u(ρe + p + 1

2
‖B‖2) − B1(u · B) = u

(
ρ

2
‖u‖2 + p

γ − 1
+ 1

2
‖B‖2 + p + 1

2
‖B‖2

)
− B1(uB1 + v B2 + w B3),

= ρu

2
‖u‖2 + γ up

γ − 1
+ uB2

2 + uB2
3 − v B1 B2 − w B1 B3. (5.37)

Now, if we assume that the left and right states are identical in the numerical flux (5.29)–(5.36), we find that

f ∗
1 → ρu = f1, (5.38)

f ∗
2 → p + ρu2 + 1

2
‖B‖2 − B2

1 = f2, (5.39)

f ∗
3 → ρuv − B1 B2 = f3, (5.40)

f ∗
4 → ρuw − B1 B3 = f4, (5.41)

f ∗
5 → γ up

γ − 1
+ ρu

2
‖u‖2 + uB2

2 + uB2
3 − v B1 B2 − w B1 B3 = f5, (5.42)

f ∗
6 → 0 = f6, (5.43)

f ∗
7 → uB2 − v B1 = f7, (5.44)

f ∗
8 → uB3 − w B1 = f8. (5.45)
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Thus, we have shown that the numerical flux given by (5.29)–(5.36) is consistent and entropy conservative.
Though the parametrization vector z was necessary to develop the entropy conserving numerical flux it obfuscates 

the information about which quantities are being averaged and their contribution in the numerical flux. It is therefore 
convenient to define how the primitive variables, through averages, are related to the parametrized numerical flux given 
by (5.29)–(5.36). We select a computationally efficient averaging procedure identical to that of Ismail and Roe [6] for the 
hydrodynamic variables, however the magnetic field terms will necessitate extra variable definitions:

ρ̂ = {{z1}} zln
5 , û1 = {{z2}}

{{z1}} , v̂1 = {{z3}}
{{z1}} , ŵ1 = {{z4}}

{{z1}} , p̂1 = {{z5}}
{{z1}} , p̂2 = γ + 1

2γ

zln
5

zln
1

+ γ − 1

2γ

{{z5}}
{{z1}} ,

û2 = {{z1z2}}{{
z2

1

}} , v̂2 = {{z1z3}}{{
z2

1

}} , ŵ2 = {{z1z4}}{{
z2

1

}} , B̂1 = {{z6}} , B̂2 = {{z7}} , B̂3 = {{z8}} ,

B̊1 =
{{

z2
6

}}
, B̊2 =

{{
z2

7

}}
, B̊3 =

{{
z2

8

}}
, B̂1 B2 = {{z6z7}} , B̂1 B3 = {{z6z8}} .

(5.46)

We can write, respectively, the entropy conserving flux and source term discretization in the more illuminating forms

f ∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂û1

p̂1 + ρ̂û2
1 + 1

2

(
B̊1 + B̊2 + B̊3

)− B̊1

ρ̂û1 v̂1 − B̂1 B2

ρ̂û1 ŵ1 − B̂1 B3
γ û1 p̂2
γ −1 + ρ̂û1

2 (û2
1 + v̂2

1 + ŵ2
1) + û2

(
B̂2

2 + B̂2
3

)
− B̂1

(
v̂2 B̂2 + ŵ2 B̂3

)
0

û2 B̂2 − v̂2 B̂1

û2 B̂3 − ŵ2 B̂1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.47)

and

si = 1

2

(
s

i+ 1
2

+ s
i− 1

2

)
= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� B1 �

i+ 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�xz2

1 B1
}}

{{z1 z3}}B̂2{{
�xz2

1 B2
}}

{{z1 z4}}B̂3{{
�xz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i+ 1

2

+ � B1 �
i− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�xz2

1 B1
}}

{{z1 z3}}B̂2{{
�xz2

1 B2
}}

{{z1 z4}}B̂3{{
�xz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. � (5.48)

Remark 1 (Consistency with entropy conserving Euler flux). If the flow occurs in a medium without a magnetic field then the 
ideal MHD model becomes the compressible Euler equations. The structure of f ∗,ec (5.47) can be separated into an Euler 
component and magnetic field component, i.e.,

f ∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂û1

p̂1 + ρ̂û2
1

ρ̂û1 v̂1
ρ̂û1 ŵ1

γ û1 p̂2
γ −1 + ρ̂û1

2 (û2
1 + v̂2

1 + ŵ2
1)

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2

(
B̊1 + B̊2 + B̊3

)− B̊1

−B̂1 B2

−B̂1 B3

û2

(
B̂2

2 + B̂2
3

)
− B̂1

(
v̂2 B̂2 + ŵ2 B̂3

)
0

û2 B̂2 − v̂2 B̂1

û2 B̂3 − ŵ2 B̂1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.49)

Thus, if the magnetic field components are zero we find
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f ∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂û1

p̂1 + ρ̂û2
1

ρ̂û1 v̂1
ρ̂û1 ŵ1

γ û1 p̂2
γ −1 + ρ̂û1

2 (û2
1 + v̂2

1 + ŵ2
1)

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.50)

and f ∗,ec becomes the entropy conserving flux for the Euler equations described by Ismail and Roe [6]. This separation of 
the Euler components and magnetic components is useful as it grants flexibility in the underlying flux for the hydrodynamic 
components. In Appendix B, inspired by the work of Chandrashekar [7], we outline an alternative numerical flux that is 
entropy and kinetic energy conserving.

Remark 2 (Multi-dimensional entropy conserving fluxes). A similar form of the proof of entropy conservation for the flux f
in the x-direction can be used to derive the entropy conservative fluxes for the ideal MHD equations in y and z-directions. 
Full details are given in Appendix A of this paper.

5.2. Dissipation terms for an entropy stable flux

To create an entropy stable numerical flux function we use the entropy conserving flux (5.5) as a base and subtract a 
general form of numerical dissipation, e.g.,

f ∗ = f ∗,ec − 1

2
D �q� , (5.51)

where D is a dissipation matrix. Of utmost concern for entropy stability of the approximation is to formulate the dissipation 
term (5.51) such that it is guaranteed to cause a negative contribution in the discrete entropy equation. To guarantee entropy 
stability we will reformulate the dissipation term (5.51) to incorporate the jump in the entropy variables (rather than the 
jump in conservative variables) [15]. The remainder of this section is divided as follows: we will select a specific form for 
the dissipation matrix D in Section 5.2.1. Next, in Section 5.2.2, we examine the eigenstructure of the particular dissipation 
matrix chosen. Finally, Section 5.2.3 presents a specific entropy scaling on the eigenvectors of the dissipation matrix to 
guarantee the negativity of the dissipation term.

5.2.1. The dissipation matrix
First, we select the dissipation matrix to be |̂A| that is the absolute value of the flux Jacobian for the ideal MHD 8-wave 

formulation in the x-direction:

Â := f q + P = A + P, (5.52)

where A is the flux Jacobian for the homogeneous ideal MHD equations and P is the Powell source term [17] written in 
matrix form, i.e.,

P
∂q

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 B1 0 0
0 0 0 0 0 B2 0 0
0 0 0 0 0 B3 0 0
0 0 0 0 0 u · B 0 0
0 0 0 0 0 u 0 0
0 0 0 0 0 v 0 0
0 0 0 0 0 w 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂

∂x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρe
B1
B2
B3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∂ B1

∂x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
B1
B2
B3

u · B
u
v
w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.53)

The fact that we force the positivity of D = |̂A| does not guarantee that the dissipative term (5.51) is negative [15]. Thus, in 
the remaining sections we will motivate a reformulation of the dissipation term (5.51) in order to restore negativity.

It is important to distinguish that we use the Janhunen source term (2.8) to derive an entropy conservative numerical 
flux function in Section 5.1. However, to design an entropy stable approximation we require that the eigendecomposition of 
the flux Jacobian matrix can be related to the entropy Jacobian (4.5). This particular scaling, first examined by Merriam [22]
and explored more thoroughly by Barth [15], requires that the PDE system is symmetrizable. Previous analysis of the ideal 
MHD equations [14,15] have demonstrated that the Powell source term is necessary to restore a symmetric MHD system. 
We reiterate that the altered flux Jacobian is used only to derive the dissipation term. Just as Lax–Friedrichs differs from 
Roe in the construction of a dissipation term, we use the Powell source term only to build our dissipation term. Thus, no 
inconsistency with the previous entropy conserving flux derivations is introduced.
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5.2.2. The eigenstructure of the matrix ̂A
The background discussion of the eigenstructure of the augmented flux Jacobian matrix Â is algebraically intense, so for 

clarity we divide it into the following steps:

1. We compute the eigendecomposition for the symmetrizable MHD system written in the primitive variables.
2. We use previous results from Roe and Balsara [23] and rescale the eigenvectors to remove degeneracies.
3. We recover the, now stabilized, eigendecomposition for the matrix Â.

To discuss the eigenstructure of the matrix Â it is easiest to work with primitive variables, which we denote pr , and 
convert back to conservative variables, denoted by q, when necessary. We first write the ideal MHD system modified by the 
Powell source term in terms of the conservative variables

∂q

∂t
+ Â

∂q

∂x
= 0. (5.54)

We are free to move between primitive and conservative variables in the system (5.54) with the matrix

M = qpr
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
u ρ 0 0 0 0 0 0
v 0 ρ 0 0 0 0 0
w 0 0 ρ 0 0 0 0

‖u‖2

2 ρu ρv ρw 1
γ −1 B1 B2 B3

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.55)

and from conservative to primitive variables with M−1. Then we can rewrite the system (5.54) in terms of the primitive 
variables pr

∂ pr

∂t
+ B̂

∂ pr

∂x
= 0, (5.56)

where

B̂ = M−1ÂM. (5.57)

To describe the eigenstructure of the 8-wave ideal MHD system flux Jacobian in conservative variables Â we first inves-
tigate the eigendecomposition of B̂, the flux Jacobian in primitive variables:

B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u ρ 0 0 0 0 0 0
0 u 0 0 1

ρ 0 B2
ρ

B3
ρ

0 0 u 0 0 0 − B1
ρ 0

0 0 0 u 0 0 0 − B1
ρ

0 γ p 0 0 u 0 0 0
0 0 0 0 0 u 0 0
0 B2 −B1 0 0 0 u 0
0 B3 0 −B1 0 0 0 u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.58)

From (5.57) we see that we can convert the resulting eigendecomposition to conservative variables with straightforward 
matrix multiplication and the identity

Â = MB̂M−1. (5.59)

So, once we compute the eigendecomposition

B̂ = R�̂R−1, (5.60)

we can recover the eigendecomposition of the flux Jacobian matrix in conservative variables as

Â = MB̂M−1 = MR�̂R−1M−1 = R̂ �̂ R̂−1, R̂ = MR. (5.61)

We begin with a naively scaled eigendecomposition of the matrix B̂. The 8-wave formulation supports eight traveling 
wave solutions with eigenvalues

λ± f = u ± c f , λ±s = u ± cs, λ±a = u + ca, λE = u, λD = u, (5.62)
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where c f , cs are the fast and slow magnetoacoustic wave speeds and ca is the Alfvén wave speed. The double eigenvalue 
u represent the entropy wave and divergence wave. The divergence wave is a direct result of including the Powell source. 
As we previously mentioned, the Powell source term turns the divergence wave into an advected scalar which is directly 
reflected in the eigenstructure. The values for the characteristic wave speeds may be written as

c2
a = b2

1, c2
f ,s = 1

2
(a2 + b2) ± 1

2

√
(a2 + b2)2 − 4a2b2

1, (5.63)

with the conventional notation

b = B√
ρ

, b2 = b2
1 + b2

2 + b2
3, b2⊥ = b2

2 + b2
3, a2 = pγ

ρ
. (5.64)

In (5.63) the plus sign is for the fast speed c f and minus sign is the slow speed cs . We also have the complete set of naively 
scaled eigenvectors (as presented in [15])

Entropy and Divergence Waves: λE,D = u

rE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, rD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.65)

Alfvén Waves: λ±a = u ± b1

r±a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

∓B3
±B2

0
0

−√
ρB3√

ρB2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.66)

Magnetoacoustic Waves: λ± f ,±s = u ± c f ,s

r± f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

±c f

∓ c f b1b2

c2
f −b2

1

∓ c f b1b3

c2
f −b2

1

ρa2

0
√

ρc2
f b2

c2
f −b2

1√
ρc2

f b3

c2
f −b2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r±s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

±cs

∓ csb1b2
c2

s −b2
1

∓ csb1b3
c2

s −b2
1

ρa2

0
√

ρc2
s b2

c2
s −b2

1√
ρc2

s b3

c2
s −b2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.67)

In this form the magnetoacoustic eigenvectors exhibit several forms of degeneracy that are carefully described by Roe and 
Balsara [23].

We follow the same rescaling procedure of Roe and Balsara for the fast/slow magnetoacoustic eigenvectors (5.67). The 
algebra is simplified greatly if we introduce the parameters

α2
f = a2 − c2

s

c2
f − c2

s
, α2

s = c2
f − a2

c2
f − c2

s
. (5.68)

The parameters (5.68) have several useful properties:
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α2
f + α2

s = 1, α2
f c2

f + α2
s c2

s = a2, α f αs = a2b⊥
c2

f − c2
s
. (5.69)

The parameters α f ,s measure how closely the fast/slow waves approximate the behavior of acoustic waves [23]. In the 
rescaling process we utilize several identities that arise from the quartic equation for the magnetoacoustic wave speeds 
±c f ,s

c4 − (a2 + b2)c2 + a2b2
1 = 0, (5.70)

which are

c f cs = a|b1|,
c2

f + c2
s = a2 + b2,

c4
f ,s − a2b2

1 = c2
f ,s

(
c2

f ,s − c2
s, f

)
,(

c2
f ,s − a2

)(
c2

f ,s − b2
1

)
= c2

f ,sb2⊥.

(5.71)

Applying the identities (5.69) and (5.71) we rewrite the eigenvectors for the fast/slow waves in a more stable form in terms 
of the parameters α f ,s . We also rewrite the Alfvén wave vectors in terms of the variable b for convenience:

Entropy and Divergence Waves: λE,D = u

rE =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, rD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.72)

Alfvén Waves: λ±a = u ± b1

r±a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

∓√
ρ b3

±√
ρ b2
0
0

−ρb3
ρb2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.73)

Magnetoacoustic Waves: λ± f ,±s = u ± c f ,s

r± f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f ρ

±α f c f

∓αscsβ2sgn(b1)

∓αscsβ3sgn(b1)

α f ρa2

0

αsaβ2
√

ρ

αsaβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r±s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

±αscs

±α f c f β2sgn(b1)

±α f c f β3sgn(b1)

αsρa2

0

−α f aβ2
√

ρ

−α f aβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.74)

where the normalized, tangential magnetic field components are given by

β2,3 = b2,3
. (5.75)
b⊥
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These quantities β2,3 are indeterminate if b⊥ ≈ 0. It was suggested in [24] that, in this degenerate case, the value of β may 
be given arbitrarily, e.g., 1/

√
2. Such a definition preserves the orthogonality of the eigenvectors. We denote the matrix of 

rescaled right eigenvectors R of B̂ with columns given by the vectors (5.72)–(5.74) in the following order

R =
[

r− f
∣∣ r−a

∣∣ r−s
∣∣ rE

∣∣ rD
∣∣ r+s

∣∣ r+a
∣∣ r+ f

]
, (5.76)

and L = R−1.
Recall that the right eigenvectors for the matrix Â are given by R̂ = MR. That is, we simply multiply the matrix M (5.55)

and the matrix of rescaled right eigenvectors (5.76). We summarize the simplified right eigenvectors for R̂ = MR:

Entropy and Divergence Waves: λE,D = u

r̂E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u
v
w

‖u‖2

2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0√
ρ b1

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.77)

Alfvén Waves: λ±a = u ± b1

r̂±a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

∓ρ
3
2 b3

±ρ
3
2 b2

±ρ
3
2 (b2 w − b3 v)

0
−ρb3
ρb2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.78)

Magnetoacoustic Waves: λ± f ,±s = u ± c f ,s

r̂± f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f ρ

α f ρ(u ± c f )

ρ
(
α f v ∓ αscsβ2sgn(b1)

)
ρ
(
α f w ∓ αscsβ3sgn(b1)

)

± f

0

αsaβ2
√

ρ

αsaβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂±s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

αsρ (u ± cs)

ρ
(
αs v ± α f c f β2sgn(b1)

)
ρ
(
αs w ± α f c f β3sgn(b1)

)

±s

0

−α f aβ2
√

ρ

−α f aβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.79)

where we introduce the auxiliary variables


± f = α f ρ

2
‖u‖2 + aαsρb⊥ + α f ρa2

γ − 1
± α f c f ρu ∓ αscsρ sgn(b1) (vβ2 + wβ3) ,


±s = αsρ

2
‖u‖2 − aα f ρb⊥ + αsρa2

γ − 1
± αscsρu ± α f c f ρ sgn(b1) (vβ2 + wβ3) .

(5.80)

For convenience in later derivations, we denote the matrix of right eigenvectors R̂ with columns given by the vectors 
(5.77)–(5.79) in the following order

R̂ =
[

r̂− f
∣∣ r̂−a

∣∣ r̂−s
∣∣ r̂E

∣∣ r̂D
∣∣ r̂+s

∣∣ r̂+a
∣∣ r̂+ f

]
, (5.81)

and ̂L = R̂−1.
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5.2.3. Entropy scaled right eigenvectors
Now we have a symmetrizable matrix Â with a complete set of eigenvalues and right eigenvectors. We next utilize a 

previous result from Barth [15] which provides a systematic approach to restructure a general eigenvalue problem to a 
symmetric eigenvalue problem. To do so we rescale the right eigenvectors of an eigendecomposition with respect to a right 
symmetrizer matrix in the following way:

Lemma 1 (Eigenvector scaling). Let A ∈Rn×n be an arbitrary diagonalizable matrix and S the set of all right symmetrizers:

S =
{

B ∈Rn×n
∣∣ B is s.p.d., AB = (AB)T

}
. (5.82)

Further, let R ∈ Rn×n denote the right eigenvector matrix which diagonalizes A, i.e., A = R�R−1 , with r distinct eigenvalues. Then for 
each B ∈ S there exists a symmetric block diagonal matrix T that block scales columns of R, ̃R = RT, such that

B = R̃R̃T , A = R̃�R̃−1, (5.83)

which implies

AB = R̃�R̃T . (5.84)

Proof. The proof of the eigenvector scaling lemma is given in [15]. �
Theorem 2 (Entropy stable-Roe type stabilization (ES-Roe)). If we apply the diagonal scaling matrix

T = diag

(
1√

2ργ
,

√
p

2ρ3b2⊥
,

1√
2ργ

,

√
ρ(γ − 1)

γ
,

√
p

ρ
,

1√
2ργ

,

√
p

2ρ3b2⊥
,

1√
2ργ

)
, (5.85)

to the matrix of right eigenvectors ̂R (5.81), then we obtain the Merriam identity [22] (Eq. (7.3.1), p. 77)

H = R̃R̃T = (̂
RT
) (̂

RT
)T = R̂ŜRT , (5.86)

that relates the right eigenvectors of ̂A to the entropy Jacobian matrix (4.5). For convenience, we introduce the diagonal scaling matrix 
S = T2 in (5.86). We then have the guaranteed entropy stable flux interface contribution

f ∗,ES-Roe = f ∗,ec − 1

2
R̂|�̂|ŜRT � v � . (5.87)

Proof. We define the dissipation term in the numerical flux (5.51) to be

−1

2
D �q� = −1

2
|̂A| �q� = −1

2
R̂|�̂|̂L �q� , (5.88)

where the eigendecomposition of Â = R̂ �̂ L̂ is given by (5.62) and (5.81). We define entropy stability to mean the approxi-
mation guarantees that the entropy within the system is a decreasing function, satisfying the following inequality

∂U

∂t
+ ∂ F

∂x
− v T s ≤ 0. (5.89)

From the previously computed discrete entropy update (4.10) and the condition (4.11) we find the total entropy within an 
element (now including the dissipative term (5.88)) to be

∂

∂t
(�xL U L + �xR U R) = � v �T f ∗ − � v · f � + {{�xv}} T s

i+ 1
2
,

= � v �T f ∗,ec − 1

2
� v �T R̂|�̂|̂L �q� − � v · f � + {{�xv}} T s

i+ 1
2
,

∂

∂t
(�xL U L + �xR U R) = − � F � − 1

2
� v �T R̂|�̂|̂L �q� ,

∂

∂t
(�xL U L + �xR U R) + � F � = −1

2
� v �T R̂|�̂|̂L �q� ,

(5.90)

from the design of the entropy conserving flux f ∗,ec . To ensure entropy stability, we must guarantee that the RHS term in 
(5.90) is non-positive. Unfortunately, it was shown by Barth [15] that the term

−1 � v �T R̂|�̂|̂L �q� , (5.91)

2
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may become positive in the presence of very strong shocks. However, we know from entropy symmetrization theory, e.g.
[15,22], that the entropy Jacobian H, given by (4.5), is a right symmetrizer for the flux Jacobian that incorporates the Powell 
source term Â. Therefore, with the proper scaling matrix T we acquire the Merriam identity

H = R̃R̃T = (̂
RT
) (̂

RT
)T = R̂ŜRT . (5.92)

The rescaling of the right eigenvectors of Â to satisfy the Merriam identity (5.92) is sufficient to guarantee the negativity of 
(5.91). We see from (5.91) and (5.92)

−1

2
� v �T R̂|�̂|̂L �q� � −1

2
� v �T R̂|�̂|̂Lqv � v � ,

= −1

2
� v �T R̂|�̂|̂LH � v � ,

= −1

2
� v �T R̂|�̂|̂L

(
R̂ŜRT

)� v � ,

= −1

2
� v �T R̂|�̂|ŜRT � v � ,

(5.93)

where we used that L̂ = R̂−1. So with the appropriate diagonal scaling matrix S we have shown that (5.93) is guaranteed 
negative because the product is a quadratic form scaled by a negative. We use the right eigenvectors from (5.81), the 
constraint (5.92), and after a considerable amount of algebraic manipulation we determine the diagonal scaling matrix

T = diag

(
1√

2ργ
,

√
p

2ρ3b2⊥
,

1√
2ργ

,

√
ρ(γ − 1)

γ
,

√
p

ρ
,

1√
2ργ

,

√
p

2ρ3b2⊥
,

1√
2ργ

)
. � (5.94)

Remark 3 (Entropy stable-local Lax–Friedrichs type stabilization (ES-LLF)). There are other possible, negativity guaranteeing (but 
more dissipative) choices for the dissipation term (5.51). For example, if we make the simple choice of dissipation matrix 
to be

D = |λmax|I, (5.95)

where λmax is the largest eigenvalue of the system from (5.62) and I is the identity matrix, then we can rewrite the 
dissipation term

−1

2
|λmax|I �q� � −1

2
|λmax|H � v � ,

= −1

2
|λmax |̂RŜRT � v � ,

(5.96)

and we obtain a local Lax–Friedrichs type interface stabilization

f ∗,ES-LLF = f ∗,ec − 1

2
|λmax|H � v � ,

= f ∗,ec − 1

2
|λmax |̂RŜRT � v � ,

(5.97)

where, again, we use the Merriam identity (5.86) for the entropy Jacobian H.

Remark 4 (Evaluation of dissipative terms). For the entropy stable numerical results in Sections 6.4 and 6.5.2 we use the 
arithmetic mean of the left and right states at an interface to create the matrices R̂, S, �̂, and H in the diffusion terms for 
the ES-Roe scheme (5.87) or the ES-LLF scheme (5.97).

6. Numerical results

In this section, we numerically verify the theoretical findings for the entropy conserving and entropy stable approxi-
mations for the ideal MHD equations. To integrate the semi-discrete formulation in time we use a low storage five-stage, 
fourth-order accurate Runge–Kutta time integrator of Carpenter and Kennedy [25]. First, in Section 6.1, we consider a test 
problem with a known analytical solution to demonstrate the accuracy of the entropy conserving method as well as the two 
stabilized formulations. Next, Section 6.2 demonstrates the entropy conservation of the approximation for a three Riemann 
problem configurations on regular and irregular grids. In Section 6.3 we demonstrate the computed solution of the three 
Riemann problems for the entropy conserving method. These solutions will exhibit significant oscillations in shocked re-
gions. Finally, in Section 6.4 we compare the two entropy stable approximations (5.87) and (5.97) against a high-resolution 
approximation comparable to that presented in the literature [11,24,26,27].
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Table 1
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the entropy conserving (EC) scheme on a regular grid.

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 5.29E−03 5.53E−03 5.53E−03 5.53E−03 3.07E−03 0.00 1.64E−03 1.64E−03
100 2.12E−03 2.36E−03 2.36E−03 2.36E−03 1.05E−03 0.00 2.67E−04 2.67E−04
200 9.65E−04 9.39E−04 9.39E−04 9.39E−04 2.56E−04 0.00 1.50E−04 1.50E−04
400 2.40E−04 1.33E−04 1.33E−04 1.33E−04 6.39E−05 0.00 3.56E−05 3.56E−05

avg EOC 1.93 1.79 1.79 1.79 1.86 – 1.85 1.85

Table 2
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the entropy conserving (EC) scheme on an irregular grid with a 
stretching factor of (6.3).

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 1.32E−01 1.74E−01 1.24E−01 1.24E−01 1.57E−00 0.00 1.67E−01 1.67E−01
100 6.20E−02 7.63E−02 5.59E−02 5.59E−02 7.80E−01 0.00 8.26E−02 8.26E−02
200 3.12E−02 3.56E−02 2.64E−02 2.64E−02 3.85E−01 0.00 4.07E−02 4.07E−02
400 1.54E−02 1.72E−02 1.29E−02 1.29E−02 1.91E−01 0.00 2.02E−02 2.02E−02

avg EOC 1.03 1.11 1.09 1.09 1.01 – 1.02 1.02

6.1. Convergence

For the convergence test, we switch to the manufactured solution technique and generate a smooth and periodic solution⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ(x, t)
u(x, t)
v(x, t)
w(x, t)
p(x, t)

B1(x, t)
B2(x, t)
B3(x, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 + sin (2π (x − t))
1
1
1

(2 + sin (2π (x − t)))2

1
2 + sin (2π (x − t))
2 + sin (2π (x − t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.1)

with an additional analytic source term on the right hand side⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(x, t)
s2(x, t)
s3(x, t)
s4(x, t)
s5(x, t)
s6(x, t)
s7(x, t)
s8(x, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
4ρρx

−ρx

−ρx

4ρρx − 2ρx

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.2)

on the domain � = [−1, 1] with periodic boundary conditions and final time T = 2. We select the time step for the RK 
method small enough such that the error in the approximation is dominated by the error in the spatial discretizations. For 
all computations, we select a regular grid chosen according to the number of grid cells listed in the tables below as well as 
an irregular stretched mesh with a fixed ratio of

�xmax

�xmin
= 10. (6.3)

First, we test the entropy conserving (EC) scheme on a regular grid. The L2-errors for all conserved quantities are shown 
in Table 1. We note that for the specific regular grid used in the numerical experiment, the entropy conserving scheme is 
second order accurate. The average accuracy is hovering around 1.85, however looking closely at the finest grid results, it 
is clear that the experimental order of convergence is close to 2. The higher order convergence for the EC finite volume 
scheme is an effect of approximating the solution on a regular grid. The scheme drops to first order accuracy when an 
irregular grid is chosen as shown in Table 2, where we stretch the grid with a constant factor of (6.3).

Next, we demonstrate the convergence of the two entropy stable finite volume schemes. The convergence results for 
the ES-Roe method are shown for the regular grid test in Table 3 and the irregular grid test in Table 4, where we see the 
average experimental convergence rate for either the regular or irregular grids are both first order accurate. Similar results 
for the ES-LLF scheme are given for the regular grid in Table 5 and the irregular grid in Table 6. We see that the ES-LLF 
method is decidedly first order accurate as well.
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Table 3
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the ES-Roe scheme on a regular grid.

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 2.49E−02 1.90E−01 3.46E−02 3.46E−02 4.07E−01 0.00 4.01E−02 4.01E−02
100 1.50E−02 1.01E−01 1.01E−02 1.01E−02 2.04E−01 0.00 1.99E−02 1.99E−02
200 9.00E−03 5.85E−02 5.50E−03 5.50E−03 1.12E−01 0.00 1.18E−02 1.18E−02
400 3.26E−03 3.05E−02 2.85E−03 2.85E−03 6.04E−02 0.00 5.93E−03 5.93E−03

avg EOC 0.98 0.88 0.91 0.91 0.92 – 0.92 0.92

Table 4
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the ES-Roe scheme on an irregular grid with stretching factor 
(6.3).

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 8.05E−02 3.38E−01 8.17E−02 8.17E−02 5.52E−01 0.00 4.50E−02 4.50E−02
100 4.25E−02 1.75E−01 5.13E−02 5.13E−02 2.55E−01 0.00 2.30E−02 2.30E−02
200 2.19E−02 9.05E−02 2.74E−02 2.74E−02 1.35E−01 0.00 1.22E−02 1.22E−02
400 1.11E−02 4.65E−02 1.41E−03 1.41E−02 6.54E−02 0.00 6.27E−03 6.27E−03

avg EOC 0.95 0.95 0.95 0.95 1.02 – 0.95 0.95

Table 5
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the ES-LLF scheme on a regular grid.

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 3.24E−02 2.16E−01 3.94E−02 3.94E−02 2.77E−01 0.00 3.06E−02 3.06E−02
100 2.03E−02 1.14E−01 2.02E−02 2.02E−02 1.32E−01 0.00 1.49E−02 1.49E−02
200 1.19E−02 6.82E−02 1.13E−02 1.13E−02 6.70E−02 0.00 7.87E−03 7.87E−03
400 5.39E−03 3.25E−02 5.77E−03 5.77E−03 3.50E−02 0.00 4.12E−03 4.12E−03

avg EOC 0.87 0.91 0.92 0.92 1.00 – 0.96 0.96

Table 6
L2 error of approximation to demonstrate the experimental order of convergence (EOC) for the ES-LLF scheme on an irregular grid with stretching factor 
(6.3).

# elements ρ ρu ρv ρw ρe B1 B2 B3

50 5.23E−02 3.70E−01 6.67E−02 6.67E−02 4.19E−01 0.00 2.34E−02 2.34E−02
100 2.66E−02 1.91E−01 3.48E−02 3.48E−02 2.11E−01 0.00 1.16E−02 1.16E−02
200 1.33E−02 1.03E−01 1.81E−02 1.81E−02 1.05E−02 0.00 6.04E−03 6.04E−03
400 6.91E−03 6.56E−02 9.25E−03 9.25E−03 5.52E−03 0.00 3.12E−03 3.12E−03

avg EOC 0.97 0.96 0.95 0.95 0.97 – 0.97 0.97

6.2. Mass, momentum, energy, and entropy conservation

By design we know the finite volume scheme for the ideal MHD equations with the Janhunen source term (2.8) will 
conserve mass, momentum, and total energy. From the derivations in Section 5 we know that the scheme also exactly 
preserves the entropy on a general grid, if we use the newly designed flux f ∗,ec (5.1). We measure the change in any of the 
conservative variables with

�e(T ) := |eint(t = 0) − eint(T )|, (6.4)

where, for example, eint is the entropy function

U = − ρs

γ − 1
, (6.5)

integrated over the whole domain.
To demonstrate the conservative properties we consider three one-dimensional Riemann problems from the literature. 

The test problems we consider are:

1. Brio and Wu Shock Tube [24]:

[
ρ,ρu,ρv,ρw, p, B1, B2, B3

]T =
{

[1,0,0,0,1,0.75,1,0]T , if x ≤ 0.5,

[0.125,0,0,0,0.1,0.75,−1,0]T , if x > 0.5,
(6.6)

on the domain � = [0, 1], γ = 2, and final time T = 0.12.
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Table 7
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Brio and Wu shock tube problem (6.6) for 
different CFL numbers, final time T = 0.12, and 100 regular grid cells.

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 2.00E−16 2.08E−16 4.51E−16 2.44E−15 8.88E−16 0.00 3.13E−16 2.22E−16 5.64E−04
0.1 2.66E−16 2.77E−16 2.77E−16 −2.22E−15 1.11E−15 0.00 1.36E−16 2.22E−16 1.61E−08
0.01 2.66E−16 2.22E−16 2.22E−16 −2.22E−15 1.11E−15 0.00 2.01E−16 8.88E−16 1.41E−12

Table 8
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Ryu and Jones Riemann problem (6.7) for 
different CFL numbers, final time T = 0.4, and 100 regular grid cells.

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 2.22E−16 2.22E−16 2.22E−16 4.44E−16 4.44E−16 0.00 2.22E−16 4.34E−16 2.86E−05
0.1 2.22E−16 2.87E−16 1.13E−16 4.44E−16 4.44E−16 0.00 2.22E−16 2.22E−16 1.97E−09
0.01 8.88E−16 2.22E−16 2.22E−16 −2.22E−16 4.44E−16 0.00 4.44E−16 8.88E−16 1.62E−13

Table 9
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Torrilhon Riemann problem (6.8) for 
different CFL numbers, final time T = 0.4, and 100 regular grid cells.

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 1.55E−15 2.22E−16 2.22E−16 4.44E−16 2.22E−16 0.00 2.22E−16 2.22E−16 1.02E−05
0.1 6.66E−16 2.22E−16 4.44E−16 4.44E−16 2.22E−16 0.00 6.66E−16 1.11E−16 1.08E−09
0.01 8.88E−16 2.22E−16 2.22E−16 4.44E−16 2.22E−16 0.00 −2.22E−16 2.22E−16 1.06E−13

2. Ryu and Jones Riemann Problem [26]:

[
ρ,ρu,ρv,ρw, p, B1, B2, B3

]T =
{

[1,0,0,0,1,0.7,0,0]T , if x ≤ 0,

[0.3,0,0,1,0.2,0.7,1,0]T , if x > 0,
(6.7)

on the domain � = [−1, 1], γ = 5/3, and final time T = 0.4.
3. Torrilhon Riemann Problem [27]:

[
ρ,ρu,ρv,ρw, p, B1, B2, B3

]T =
{

[3,0,0,0,3,1.5,1,0]T , if x ≤ 0,

[1,0,0,0,1,1.5, cos(1.5), sin(1.5)]T , if x > 0,
(6.8)

on the domain � = [−1, 1.5], γ = 5/3, and final time T = 0.4.

For each of the conservation test problems we set periodic boundary conditions.
We compute the error in the change of each conservative variable for three values of the Courant–Friedrichs–Lewy (CFL) 

number: 1.0, 0.1, and 0.01. For each simulation the entropy conserving finite volume scheme used 100 regular grid cells to 
compute the results in Tables 7, 8, and 9 and 100 irregular grid cells for the results in Tables 10, 11, and 12.

For each value of the CFL number we obtain errors in the mass, momentum, energy, and magnetic field variables on the 
order of finite precision. This is not surprising as for one-dimensional MHD flow we know analytically that B1 ≡ constant
and thus the Janhunen source term is identically zero. We reiterate the source term was necessary for the proof of entropy 
conservation in Section 5.1, but is expected to vanish in 1D. For multi-dimensional flows one would see that the addition of 
the Janhunen source term to enforce the divergence-free condition will cause the loss of conservation of the magnetic field 
quantities B .

Due to the dissipative influence of the time integrator we know that the entropy should not be conserved. However, 
due to the entropy conservative flux the change in the total entropy will converge to zero as �t converges to zero. In each 
of the Tables 7–12 we demonstrate this property. The dissipation introduced by the temporal discretization is significantly 
reduced if we shrink the time step. We see that the change of the entropy can be lowered to single or double machine 
precision by decreasing the CFL number, and hence the time step.

In each of the tables in this section it is also possible to see the temporal accuracy of the approximations. If we shrink 
the time step by a factor ten we see that the error in the entropy shrinks by a little over a factor of 104, as we expect for a 
fourth order time integrator.

6.3. Entropy conserving Riemann problem

We now apply the entropy conserving (EC) scheme to the Riemann problems (6.6)–(6.8), except we choose inflow/outflow 
type boundary conditions. The computation is performed on 200 regular grid cells with CFL number 0.1 and to the final time 
indicated by the test problem subscribed. As we discussed in Section 5, entropy conserving methods suffer breakdown in 
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Table 10
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Brio and Wu shock tube problem (6.6) for 
different CFL numbers, final time T = 0.12, and 100 irregular grid cells with a stretching factor (6.3).

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 5.55E−16 4.44E−16 2.22E−16 2.22E−16 4.44E−16 0.00 1.84E−15 8.88E−16 5.54E−04
0.1 2.22E−16 8.88E−16 2.22E−16 −2.22E−15 2.22E−15 0.00 1.11E−15 8.88E−16 5.05E−08
0.01 4.44E−16 2.22E−16 2.22E−16 −5.55E−15 1.33E−15 0.00 8.82E−15 4.44E−16 2.73E−12

Table 11
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Ryu and Jones Riemann problem (6.7) for 
different CFL numbers, final time T = 0.4, and 100 irregular grid cells with a stretching factor (6.3).

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 2.22E−16 2.22E−16 2.22E−16 4.44E−16 2.22E−16 0.00 2.22E−16 1.11E−16 3.51E−04
0.1 2.22E−16 2.22E−16 1.11E−16 1.11E−16 2.22E−16 0.00 4.44E−16 2.22E−16 2.56E−08
0.01 2.88E−15 2.22E−16 2.22E−16 1.33E−16 8.88E−16 0.00 6.66E−16 2.22E−16 2.30E−12

Table 12
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the Torrilhon Riemann problem (6.8) for 
different CFL numbers, final time T = 0.4, and 100 irregular grid cells with a stretching factor (6.3).

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 2.22 − 16 2.22E−16 2.22E−16 4.44E−16 1.11E−16 0.00 2.22E−16 2.22E−16 6.28E−04
0.1 2.22E−16 4.44E−16 4.44E−16 4.44E−16 2.22E−16 0.00 −2.22E−16 −5.55E−16 5.00E−08
0.01 8.88E−16 2.22E−16 2.22E−16 4.44E−16 4.44E−16 0.00 −4.44E−16 6.66E−16 4.08E−12

the presence of shocks. The numerical approximation does not dissipate energy at a shock. Thus, we expect large post-shock 
oscillations for the EC scheme applied to a Riemann problem. To create a reference solution for each of the test problems 
we use the ES-Roe scheme on 5000 grid cells. The ES-LLF scheme gives the same reference solution with 10,000 grid cells.

6.3.1. Brio and Wu shock tube
Fig. 1 shows results for the entropy conserving (EC) finite volume scheme for the Brio and Wu shock tube. The EC 

method captures the fast/slow rarefractions, slow compound wave in the density, u and the pressure, as well as shocks. 
However, this comes at the expense of large post-shock oscillations. These oscillations are expected as energy must be 
dissipated across the shock but the EC scheme is basically dissipation free except for the influence of the time integrator.

6.3.2. Ryu and Jones Riemann problem
Fig. 2 presents the computed EC solution for the Ryu and Jones Riemann problem. The EC method captures the fast/slow 

rarefractions and shocks well. But, again, there are large oscillations generated in the post-shock regions.

6.3.3. Torrilhon Riemann problem
Last of the EC computations, we show the results of the EC approximate solution for the Torrilhon Riemann problem in 

Fig. 3. This computed solution tracks the complex features of the flow, but there large oscillations are still present, as we 
have come to expect for a discretely entropy conserving approximation.

6.4. Entropy stable Riemann problem

For the final set of one dimensional numerical tests we use the ES-Roe and ES-LLF schemes to compute the entropy 
stable solution of the three Riemann problems with inflow/outflow type boundary conditions. We then compare the results 
to those present in the literature. The computation is performed on 200 regular grid cells with CFL number 0.1 up to a final 
time dictated by the test problem. Again, we use a reference solution created using a high-resolution run of the ES-Roe 
scheme on 5000 grid cells.

6.4.1. Brio and Wu shock tube
Fig. 4 shows results for the ES-Roe and ES-LLF finite volume schemes applied to the Brio and Wu shock tube problem. 

Both entropy stable methods capture the complex behavior, but we see that the ES-Roe scheme is less dissipative than 
the ES-LLF scheme. The ES-LLF scheme has difficulty capturing the sharp features of the complex MHD flow (like the slow 
compound wave in the u velocity component). These computations compare well with those presented in the literature 
[17,24].

6.4.2. Ryu and Jones Riemann problem
Fig. 5 presents the computed ES-Roe and ES-LLF solution for the Ryu and Jones Riemann problem. Each entropy stable 

scheme capture the complex behavior of the MHD flow and, for the weaker shocks, we see that there is less difference 
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Fig. 1. In blue we present the entropy conserving approximations for the Brio and Wu shock tube of the density ρ , pressure p, x and y velocity components, 
and the y of the magnetic field at T = 0.12. Solid black represents the reference solution. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
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Fig. 2. We present, in blue, the entropy conserving approximations of the Ryu and Jones Riemann problem density ρ , pressure p, x, y, and z velocity 
components, and the y and z components of the magnetic field at T = 0.4. Solid black represents the reference solution. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The computed entropy conserving approximations (in blue) of the density ρ , pressure p, x, y, and z velocity components, and the y and z compo-
nents of the magnetic field at T = 0.4 for the Torrilhon Riemann problem. Solid black represents the reference solution. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)



A.R. Winters, G.J. Gassner / Journal of Computational Physics 304 (2016) 72–108 97
Fig. 4. The entropy stable approximations of the density ρ , pressure p, x and y velocity components, and the y of the magnetic field of the Brio and Wu 
shock tube at T = 0.12. Solid black is the reference solution, dashed blue is the ES-LLF scheme, and red with knots is the ES-Roe scheme. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The entropy stable approximations of the density ρ , pressure p, x, y, and z velocity components, and the y and z components of the magnetic field 
of the Ryu and Jones problem at T = 0.4. Solid black is the reference solution, dashed blue is the ES-LLF scheme, and red with knots is the ES-Roe scheme. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 13
Conservation errors (integrated over the whole domain) of the entropy conserving approximation applied to the 2.5D shock tube problem (6.9) for different 
CFL numbers, final time T = 0.2, and 50 regular grid cells in each direction.

CFL ρ ρu ρv ρw ρe B1 B2 B3 U

1.0 2.00E−16 2.08E−16 4.51E−16 2.44E−15 8.88E−16 3.66E−03 3.13E−03 4.22E−03 6.45E−03
0.1 2.66E−16 2.77E−16 2.77E−16 −2.22E−15 1.11E−15 3.66E−03 3.13E−03 4.22E−03 6.71E−05
0.01 2.66E−16 2.22E−16 2.22E−16 −2.22E−15 1.11E−15 3.66E−03 3.13E−03 4.22E−03 6.57E−07

between the ES-Roe scheme and the more dissipative ES-LLF scheme. Our computations are, again, comparable to those 
found in the literature [11,26].

6.4.3. Torrilhon Riemann problem
Finally, Fig. 6 presents the computed ES-Roe and ES-LLF solution for the Torrilhon Riemann problem. Again, both entropy 

stable schemes capture the complex behavior of the MHD flow. Interestingly, we note that for this test problem that the 
behavior of both entropy stable schemes is nearly identical. Our computations match well with those found in Torrilhon 
[27].

6.5. Two dimensional results

Next, we include two numerical examples to verify the entropy conservation of the approximation in higher dimensions 
as well as demonstrate the hyperbolic divergence cleaning capability of the Janhunen source term. For the two dimensional 
approximations we implement a first order finite volume method in space and a second order Runge–Kutta time integrator.

6.5.1. 2.5D shock tube: entropy conservation
This rotated shock tube problem is denoted a 2.5 dimensional test because all three components of the velocity and 

magnetic fields are non-zero [12,28,29]. The solution propagates at an angle of 45◦ relative to the x-axis. We set periodic 
boundary conditions on the domain � = [0, 1] ×[0, 1] with γ = 5

3 . Just as was done in Section 6.3 this numerical example is 
used to verify the entropy conservative properties of the newly developed entropy conserving flux functions in two spatial 
dimensions. The flux in the x-direction is given by (5.5) and the flux in the y-direction can be found in the appendix (A.7). 
The initial Riemann problem is given by

left : [
ρ,ρu,ρv,ρw, p, B1, B2, B3

]T =
[

1.08,1.2,0.01,0.5,0.95,
2√
4π

,
2√
4π

,
3.6√
4π

]T

,

right : [
ρ,ρu,ρv,ρw, p, B1, B2, B3

]T =
[

1,0,0,0,1,
2√
4π

,
4√
4π

,
2√
4π

]T

,

(6.9)

where the discontinuity is along the line x + y = 1/2.
The approximation is calculated on a 50 ×50 uniform spatial grid. In the Table 13 we present the conservative properties 

of the scheme. We see that the mass, momentum, and total energy remain conserved quantities. The introduction of the 
Janhunen source term causes a loss in conservation of the magnetic field components, as expected. Finally, similar to the 
results in Section 6.3, the change in the entropy demonstrates the temporal accuracy of the approximation. If we shrink the 
time step by a factor ten we see that the difference in the entropy shrinks by a factor of one hundred, as we expect for a 
second order time integrator.

6.5.2. MHD rotor
The ideal MHD rotor test was first proposed by Balsara and Spicer [30], in Tóth [12] this configuration is referred to as 

the first rotor problem. The computational domain is � = [0, 1] × [0, 1] with periodic boundary conditions on each side. We 
take γ = 1.4 and the initial condition is given as follows. For 

√
(x − 0.5)2 + (y − 0.5)2 = r < r0,

ρ = 10, (u, v) = u0

r0

(
−
[

y − 1

2

]
,

[
x − 1

2

])
, (6.10)

for r0 < r < r1

ρ = 1 + 9 f , (u, v) = f u0

r

(
−
[

y − 1

2

]
,

[
x − 1

2

])
, f = r1 − r

r1 − r0
, (6.11)

and for r > r1

ρ = 1, (u, v) = (0,0) , (6.12)

with r0 = 0.1, r1 = 0.115, and u0 = 2. The rest of the primitive quantities are constants given by
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Fig. 6. The entropy stable approximations of the density ρ , pressure p, x, y, and z velocity components, and the y and z components of the magnetic field 
of the Torrilhon Riemann problem at T = 0.4. Solid black is the reference solution, dashed blue is the ES-LLF scheme, and red with knots is the ES-Roe 
scheme. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The computed solution to the first rotor problem on a uniform 512 × 512 grid using the ES-Roe scheme. We present at T = 0.15 the computed 
density, pressure, Mach number, and magnetic pressure.

w = 0, p = 1, B = 5√
4π

(1,0,0) . (6.13)

The final time is T = 0.15 for the first rotor problem.
The computed density, pressure, Mach number

Ma := ‖u‖
a

, a =
√

γ p

ρ
, (6.14)

and magnetic pressure using the ES-Roe scheme are presented in Fig. 7. The computation was performed on a uniform 512 ×
512 grid with CFL = 0.8. Our computed results compare well to those found in the literature, e.g. [12,30]. The computation 
captures the circularly rotating velocity field in the central portion of the Mach number.

We noted in Section 2 that the Janhunen source term acts in an analogous fashion to a hyperbolic divergence cleaning 
method. We compute the discrete divergence of the computed magnetic field variables using a first order approximation of 
the derivative consistent with the discretization used to approximate the Janhunen source term, i.e.,

∇ · B ≈ (B1)i+1, j − (B1)i, j

�x
+ (B2)i, j+1 − (B2)i, j

�y
. (6.15)

We present in Fig. 8 the discrete divergence. We see from the plot that we discretely recover the divergence-free condition 
with three digits of accuracy. It is also interesting to compare the divergence plot Fig. 8 and the Mach number plot from 
Fig. 7. We observe that the largest divergence errors are concentrated near regions of motion, as expected for a hyperbolic 
divergence cleaning type method.
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Fig. 8. The discrete divergence of B computed from (6.15) at T = 0.15.

7. Concluding remarks

In this work we present a novel, affordable, and entropy stable flux for the one-dimensional ideal MHD equations. Upon 
relaxing the divergence-free condition such that ∂x(B1) ≈ 0 we showed that it was possible to derive a discrete entropy 
conserving numerical flux, which we denote by f ∗,ec . This assumption was also important to keep the derivations and 
proofs contained in this paper generalizable to multi-dimensional MHD approximations. We show in the appendix of this 
work that it is possible, in three dimensions, to create an entropy conserving and stable flux in each Cartesian direction. The 
derivation of the entropy conserving flux revealed that special care had to be taken for the discretization of the Janhunen 
source term in order to guarantee discrete entropy conservation. Because entropy conserving approximations can suffer 
breakdown at shocks we extended our analysis and derived two stabilizing dissipation terms that we add to the entropy 
conserving flux. We used a variety of numerical test examples from the literature to demonstrate and underscore the 
theoretical findings. Lastly, we demonstrated that the Janhunen source acts analogously to a hyperbolic divergence cleaning 
technique for multidimensional computations.

Appendix A. Flux functions in higher dimensions

The derivation of the entropy conserving and stable numerical fluxes in this paper focused on the one-dimensional ideal 
MHD equations. The restriction to one spatial dimension was because the analysis proved to be quite intense. However, the 
discussion was kept general, so the derivations in this paper readily extend to provably entropy conserving and entropy 
stable approximations of ideal MHD problems on multi-dimensional Cartesian grids. We note that for two and three di-
mensional approximations one adds the appropriate component of the Janhunen source term to each of the magnetic field 
equations.

A.1. Entropy conservative fluxes in 3D

We first note that the entropy potential in the y-direction is

φy = v · g − G = ρv + ρv‖B‖2

2p
− ρB2(u · B)

p
, (A.1)

and in the z-direction

φz = v · h − H = ρw + ρw‖B‖2

2p
− ρB3(u · B)

p
, (A.2)

where we have the entropy fluxes

G = − ρvs
, H = − ρws

. (A.3)

γ − 1 γ − 1



A.R. Winters, G.J. Gassner / Journal of Computational Physics 304 (2016) 72–108 103
Thus, the discrete entropy conservation condition (4.11) will have the same structure in each Cartesian direction. Lastly, the 
Janhunen source term contributes symmetrically to each direction. With a proof analogous of that for f ∗,ec in Section 5.1
we present the entropy conserving numerical flux for the y and z-directions

Corollary 1 (Entropy conserving numerical flux; y-direction). If we introduce the parameter vector

z =
[√

ρ

p
,

√
ρ

p
u,

√
ρ

p
v,

√
ρ

p
w,

√
ρp, B1, B2, B3

]T

, (A.4)

the averaged quantities for the primitive variables and products

ρ̂ = {{z1}} zln
5 , û1 = {{z2}}

{{z1}} , v̂1 = {{z3}}
{{z1}} , ŵ1 = {{z4}}

{{z1}} , p̂1 = {{z5}}
{{z1}} , p̂2 = γ + 1

2γ

zln
5

zln
1

+ γ − 1

2γ

{{z5}}
{{z1}} ,

û2 = {{z1z2}}{{
z2

1

}} , v̂2 = {{z1z3}}{{
z2

1

}} , ŵ2 = {{z1z4}}{{
z2

1

}} , B̂1 = {{z6}} , B̂2 = {{z7}} , B̂3 = {{z8}} ,

B̊1 =
{{

z2
6

}}
, B̊2 =

{{
z2

7

}}
, B̊3 =

{{
z2

8

}}
, B̂1 B2 = {{z6z7}} , B̂2 B3 = {{z7z8}} ,

(A.5)

and discretize the source term in the finite volume method to contribute to each element as

si jk = 1

2

(
s

i, j+ 1
2 ,k

+ s
i, j− 1

2 ,k

)
= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� B2 �

j+ 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�yz2

1 B1
}}

{{z1 z3}}B̂2{{
�yz2

1 B2
}}

{{z1 z4}}B̂3{{
�yz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
j+ 1

2

+ � B2 �
j− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1z2}}B̂1{{
�yz2

1 B1
}}

{{z1z3}}B̂2{{
�yz2

1 B2
}}

{{z1z4}}B̂3{{
�yz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
j− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.6)

where we have included additional indices on the source term for clarity, then we can determine a discrete, entropy conservative flux 
to be

g∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂ v̂1

ρ̂û1 v̂1 − B̂1 B2

p̂1 + ρ̂ v̂2
1 + 1

2

(
B̊1 + B̊2 + B̊3

)− B̊2

ρ̂ v̂1 ŵ1 − B̂2 B3
γ v̂1 p̂2
γ −1 + ρ̂ v̂1

2 (û2
1 + v̂2

1 + ŵ2
1) + v̂2 B̂2

1 − û2 B̂1 B̂2 + v̂2 B̂2
3 − ŵ2 B̂2 B̂3

v̂2 B̂1 − û2 B̂2
0

v̂2 B̂3 − ŵ2 B̂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.7)

Corollary 2 (Entropy conserving numerical flux; z-direction). If we introduce the parameter vector

z =
[√

ρ

p
,

√
ρ

p
u,

√
ρ

p
v,

√
ρ

p
w,

√
ρp, B1, B2, B3

]T

, (A.8)

the averaged quantities for the primitive variables and products

ρ̂ = {{z1}} zln
5 , û1 = {{z2}}

{{z1}} , v̂1 = {{z3}}
{{z1}} , ŵ1 = {{z4}}

{{z1}} , p̂1 = {{z5}}
{{z1}} , p̂2 = γ + 1

2γ

zln
5

zln
1

+ γ − 1

2γ

{{z5}}
{{z1}} ,

û2 = {{z1z2}}{{
z2

1

}} , v̂2 = {{z1z3}}{{
z2

1

}} , ŵ2 = {{z1z4}}{{
z2

1

}} , B̂1 = {{z6}} , B̂2 = {{z7}} , B̂3 = {{z8}} ,

B̊1 =
{{

z2
6

}}
, B̊2 =

{{
z2

7

}}
, B̊3 =

{{
z2

8

}}
, B̂1 B3 = {{z6z8}} , B̂2 B3 = {{z7z8}} ,

(A.9)

and discretize the source term in the finite volume method to contribute to each element as
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si jk = 1

2

(
s

i, j,k+ 1
2

+ s
i, j,k− 1

2

)
= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� B3 �

k+ 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�zz2

1 B1
}}

{{z1 z3}}B̂2{{
�zz2

1 B2
}}

{{z1 z4}}B̂3{{
�zz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k+ 1

2

+ � B3 �
k− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{z1 z2}}B̂1{{
�zz2

1 B1
}}

{{z1 z3}}B̂2{{
�zz2

1 B2
}}

{{z1 z4}}B̂3{{
�zz2

1 B3
}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.10)

where we have included additional indices on the source term for clarity, then we can determine a discrete, entropy conservative flux 
to be

h∗,ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂ ŵ1

ρ̂û1 ŵ1 − B̂1 B3

ρ̂ v̂1 ŵ1 − B̂2 B3

p̂1 + ρ̂ ŵ2
1 + 1

2

(
B̊1 + B̊2 + B̊3

)− B̊3
γ ŵ1 p̂2
γ −1 + ρ̂ ŵ1

2 (û2
1 + v̂2

1 + ŵ2
1) + ŵ2 B̂2

1 − û2 B̂1 B̂3 + ŵ2 B̂2
2 − v̂2 B̂2 B̂3

ŵ2 B̂1 − û2 B̂3

ŵ2 B̂2 − v̂2 B̂3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.11)

A.2. Entropy stable fluxes in 3D

Just as was done in Section 5.2 we can create 3D entropy stable flux functions. This requires the eigenstructure of the 
flux Jacobian matrices in the y and z directions augmented by the Powell source term. We denote the altered flux matrix 
in the y-direction by

B̂ = gq + Py, (A.12)

and the new z-direction flux Jacobian matrix

Ĉ = hq + Pz, (A.13)

where g , h are the physical fluxes in y, z and Py , Pz are the Powell matrix (5.53) with the non-zero column shifted to the 
seventh or eighth column respectively.

First, we describe the entropy stable fluxes in the y-direction. To do so we require the eigendecomposition of the 
matrix B̂. For convenience we denote the matrix of right eigenvectors ̂Ry with columns given by the vectors in the following 
order

R̂y =
[

r̂− f
∣∣ r̂−a

∣∣ r̂−s
∣∣ r̂E

∣∣ r̂D
∣∣ r̂+s

∣∣ r̂+a
∣∣ r̂+ f

]
, (A.14)

and ̂Ly = R̂−1
y .

Entropy and Divergence Waves: λE,D = v

r̂E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u
v
w

‖u‖2

2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0√
ρ b2
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.15)
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Alfvén Waves: λ±a = v ± b2

r̂±a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

±ρ
3
2 b3

0

∓ρ
3
2 b1

±ρ
3
2 (b3u − b1 w)

ρb3
0

−ρb1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.16)

Magnetoacoustic Waves: λ± f ,±s = v ± c f ,s

r̂± f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f ρ

ρ
(
α f u ∓ αscsβ1sgn(b2)

)
α f ρ(v ± c f )

ρ
(
α f w ∓ αscsβ3sgn(b2)

)

± f

αsaβ1
√

ρ

0

αsaβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂±s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

ρ
(
αsu ± α f c f β1sgn(b2)

)
αsρ (v ± cs)

ρ
(
αs w ± α f c f β3sgn(b2)

)

±s

−α f aβ1
√

ρ

0

−α f aβ3
√

ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.17)

where b2⊥ = b2
1 + b2

3 and we introduce the auxiliary variables


± f = α f ρ

2
‖u‖2 + aαsρb⊥ + α f ρa2

γ − 1
± α f c f ρv ∓ αscsρ sgn(b2) (uβ1 + wβ3) ,


±s = αsρ

2
‖u‖2 − aα f ρb⊥ + αsρa2

γ − 1
± αscsρv ± α f c f ρ sgn(b2) (uβ1 + wβ3) .

(A.18)

Corollary 3 (Entropy stable-Roe type stabilization (ES-Roe); y-direction). If we apply the diagonal scaling matrix

T = diag

(
1√

2ργ
,

√
p

2ρ3b2⊥
,

1√
2ργ

,

√
ρ(γ − 1)

γ
,

√
p

ρ
,

1√
2ργ

,

√
p

2ρ3b2⊥
,

1√
2ργ

)
, (A.19)

to the matrix of right eigenvectors ̂Ry (A.14), then we obtain the Merriam identity [22] (Eq. (7.3.1), p. 77)

H = R̃yR̃T
y = (̂

RyT
) (̂

RyT
)T = R̂y ŜRT

y , (A.20)

that relates the right eigenvectors of ̂B to the entropy Jacobian matrix (4.5). For convenience, we introduce the diagonal scaling matrix 
S = T2 . We then have the guaranteed entropy stable flux interface contribution

g∗,ES-Roe = g∗,ec − 1

2
R̂y|�̂|ŜRT

y � v � . (A.21)

Remark 5 (Entropy stable-local Lax Friedrichs type stabilization (ES-LLF); y-direction). If we choose the dissipation matrix to be

D = |λmax|I, (A.22)

where λmax is the largest eigenvalue of the system from ̂B and I is the identity matrix, then we obtain a local Lax–Friedrichs 
type interface stabilization

g∗,ES-LLF = g∗,ec − 1

2
|λmax|H � v � . (A.23)

Finally, we describe the entropy stable fluxes in the z-direction. To do so we require the eigendecomposition of the 
matrix Ĉ . For convenience we denote the matrix of right eigenvectors ̂Rz with columns given by the vectors in the following 
order

R̂z =
[

r̂− f
∣∣ r̂−a

∣∣ r̂−s
∣∣ r̂E

∣∣ r̂D
∣∣ r̂+s

∣∣ r̂+a
∣∣ r̂+ f

]
, (A.24)

and ̂Lz = R̂−1
z .
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Entropy and Divergence Waves: λE,D = w

r̂E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u
v
w

‖u‖2

2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0√
ρ b3
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.25)

Alfvén Waves: λ±a = w ± b3

r̂±a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

∓ρ
3
2 b2

±ρ
3
2 b1

0

∓ρ
3
2 (b2u − b1 v)

−ρb2
ρb1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.26)

Magnetoacoustic Waves: λ± f ,±s = w ± c f ,s

r̂± f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α f ρ

ρ
(
α f u ∓ αscsβ1sgn(b3)

)
ρ
(
α f v ∓ αscsβ2sgn(b3)

)
α f ρ(w ± c f )


± f

αsaβ1
√

ρ

αsaβ2
√

ρ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r̂±s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αsρ

ρ
(
αsu ± α f c f β1sgn(b3)

)
ρ
(
αs v ± α f c f β2sgn(b3)

)
αsρ (w ± cs)


±s

−α f aβ1
√

ρ

−α f aβ2
√

ρ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.27)

where b2⊥ = b2
1 + b2

2 and we introduce the auxiliary variables


± f = α f ρ

2
‖u‖2 + aαsρb⊥ + α f ρa2

γ − 1
± α f c f ρw ∓ αscsρ sgn(b3) (uβ1 + vβ2) ,


±s = αsρ

2
‖u‖2 − aα f ρb⊥ + αsρa2

γ − 1
± αscsρw ± α f c f ρ sgn(b3) (uβ1 + vβ2) .

(A.28)

Corollary 4 (Entropy stable-Roe type stabilization (ES-Roe); z-direction). If we apply the diagonal scaling matrix

T = diag

(
1√

2ργ
,

√
p

2ρ3b2⊥
,

1√
2ργ

,

√
ρ(γ − 1)

γ
,

√
p

ρ
,

1√
2ργ

,

√
p

2ρ3b2⊥
,

1√
2ργ

)
, (A.29)

to the matrix of right eigenvectors ̂Rz (A.24), then we obtain the Merriam identity [22] (Eq. (7.3.1), p. 77)

H = R̃zR̃T
z = (̂

RzT
) (̂

RzT
)T = R̂zŜRT

z , (A.30)

that relates the right eigenvectors of ̂B to the entropy Jacobian matrix (4.5). For convenience, we introduce the diagonal scaling matrix 
S = T2 . We then have the guaranteed entropy stable flux interface contribution

h∗,ES-Roe = h∗,ec − 1

2
R̂z|�̂|ŜRT

z � v � . (A.31)

Remark 6 (Entropy stable-local Lax–Friedrichs type stabilization (ES-LLF); z-direction). If we choose the dissipation matrix to be

D = |λmax|I, (A.32)
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where λmax is the largest eigenvalue of the matrix ̂C and I is the identity matrix, then we obtain a local Lax–Friedrichs type 
interface stabilization

h∗,ES-LLF = h∗,ec − 1

2
|λmax|H � v � . (A.33)

Appendix B. Entropy and kinetic energy conserving numerical flux

Inspired by Chandrashekar [7] we develop an alternate baseline numerical flux function that is both entropy and kinetic 
energy conservative. We explicitly derive the flux in the x-direction, but generalization to higher dimensions is straightfor-
ward through symmetry arguments as can be seen in Appendix A. To do so we introduce notation for the inverse of the 
temperature

β = 1

RT
= ρ

2p
. (B.1)

Corollary 5 (Entropy and kinetic energy conserving numerical flux (EKEC)). If we define the logarithmic mean (·)ln (5.1), the arithmetic 
mean {{·}}, and discretize the source term in the finite volume method to contribute to each element as

si = 1

2

(
si+ 1

2
+ si− 1

2

)
= −1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
� B1 �

i+ 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{βu}}{{B1}}
{{�xβB1}}
{{βv}}{{B2}}
{{�xβB2}}

{{βw}}{{B3}}
{{�xβB3}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i+ 1

2

+ � B1 �
i− 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

{{βu}}{{B1}}
{{�xβB1}}
{{βv}}{{B2}}
{{�xβB2}}

{{βw}}{{B3}}
{{�xβB3}}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
i− 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.2)

then we determine a discrete entropy and kinetic energy conservative flux to be

f ∗,ekec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ ln {{u}}
ρ ln {{u}}2 + {{ρ}}

2{{β}} + 1
2

({{
B2

1

}}+ {{
B2

2

}}+ {{
B2

3

}})− {{
B2

1

}}
ρ ln {{u}} {{v}} − {{B1 B2}}
ρ ln {{u}} {{w}} − {{B1 B3}}

ρ ln{{u}}
2(γ −1)β ln + {{ρ}}{{u}}

2{{β}} − 1
2ρ ln {{u}} ({{u2

}}+ {{
v2
}}+ {{

w2
}})+ ρ ln {{u}} ({{u}}2 + {{v}}2 + {{w}}2)

+{{B2}}
{{β}} ({{βu}} {{B2}} − {{βv}} {{B1}}) + {{B3}}

{{β}} ({{βu}} {{B3}} − {{βw}} {{B1}})
0

1
{{β}} ({{βu}} {{B2}} − {{βv}} {{B1}})
1

{{β}} ({{βu}} {{B3}} − {{βw}} {{B1}})

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.3)

From the definition of the inverse of the temperature (B.1), we note that the source term discretization (B.2) is identical to the dis-
cretization (5.4).

Proof. We begin by rewriting the entropy variables (4.3) and the entropy conservation condition (4.12) in terms of the 
quantity β

v =
[

γ − s

γ − 1
− β‖u‖2, 2βu, 2βv, 2βw, −2β, 2βB1, 2βB2, 2βB3

]T

, (B.4)

where we rewrite the physical entropy as

s = ln(p) − γ ln(ρ) = −(γ − 1) ln(ρ) − ln(β) − ln(2), (B.5)

and

� v �T f ∗ = � ρu � +
�

βu‖B‖2
�

− 2 � βB1(u · B) � − {{�xv}}T s
i+ 1 . (B.6)
2
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Now the proof follows the same steps as the proof given for Theorem 1. We expand each of the linear jump terms such 
that there is no mixing between the hydrodynamic and magnetic field variables. This process generates a system of eight 
equations for the eight unknown numerical flux components. Again, a consistent source term discretization reveals used 
to cancel extraneous terms in the f ∗

6 flux component. Once the source term discretization is determined we solve for the 
remaining flux components and obtain (B.3). �
Remark 7. The entropy and kinetic energy conserving flux (B.3) can, again, be split into Euler and magnetic components. 
We recover in the Euler components the entropy and kinetic energy conserving flux originally developed by Chandrashekar 
[7].
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